
                

JOURNAL OF COMPUTATIONAL PHYSICS144,257–279 (1998)
ARTICLE NO. CP975803

A Massively Parallel Three-Dimensional
Hybrid Code for Simulating Ion-Driven

Parametric Instabilities

H. X. Vu

Applied Theoretical and Computational Division, Los Alamos National Laboratory,
Los Alamos, New Mexico 87545

Received June 3, 1996; revised May 30, 1997

A massively parallel three-dimensional hybrid particle-in-cell (PIC) code, imple-
mented on the CRAY-T3D, is presented. The code is based on a physical model
described in a previous report where the electrons are modeled as an adiabatic fluid
with an arbitrary ratio of specific heatsγ and the electromagnetic field model is based
on a temporal Wentzel–Krammers–Brillouin (WKB) approximation. On a CRAY-
T3D with 512 processors, the code requires about 0.6µs/particle/time step. The
largest test problem performed with this code consists of a computational mesh of
4096× 64× 64 (16 million) cells, a total of 256 million particles, and corresponds to
a plasma volume of 50µm× 20µm× 20µm (approximately 150λ × 60λ × 60λ,
whereλ is the laser’s vacuum wavelength). We believe this code is the first PIC
computational tool capable of simulating low-frequency ion-driven parametric insta-
bilities in a large, three-dimensional plasma volume and offers a unique opportunity
for examining issues that are potentially vital to inertial confinement fusion (ICF),
e.g., nonlinear ion kinetic effects and their role in nonlinear saturation mechanisms
in three dimensions. Test simulations of the self-focusing (SF) instability and of the
self-focusing-induced deflection of a laser beam are presented.c© 1998 Academic Press

Key Words:massively parallel; three-dimensional; particle-in-cell; parametric in-
stabilities; laser-produced plasmas; stimulated Brillouin scattering.

1. INTRODUCTION

In inertial confinement fusion (ICF) applications an external high-frequency monochro-
matic electromagnetic wave such as a laser is employed to irradiate the plasma. The external
monochromatic electromagnetic wave, due to its interaction with the plasma, can undergo
either electron-driven or ion-driven parametric instabilities, and decays into various com-
binations of daughter waves [1]. Recent experiments [2–3] and fluid simulations [4–7]
indicate that ion-driven parametric instabilities, which affect the propagation of external
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driving electromagnetic fields, are prevalent in current ICF plasmas of interest. Due to a
multitude of spatial and temporal scales that exist in such plasmas and the fact that the ex-
ternal driving electromagnetic field is of high frequency, general-purpose explicit, implicit,
and hybrid PIC algorithms [8–32] are either incapable of simulating the actual physics, or
computationally inefficient. In a recent work [33], a special-purpose hybrid PIC model was
presented in which the electrons are modeled as an adiabatic fluid with an arbitrary ratio
of specific heatsγ , and the electromagnetic field model is based on a temporal Wentzel–
Krammers–Brillouin (WKB) approximation. This hybrid PIC model was implemented in
two dimensions and was shown to model ion Landau damping, finite-Debye-length effects,
aperiodically driven stimulated Brillouin scattering (SBS), and the interaction between SBS
and the filamentation instability (FI) correctly [33].

In this paper, we present HERCULES, a massively parallel three-dimensional hybrid PIC
code, implemented on the CRAY-T3D, appropriate for modeling low-frequency ion-driven
parametric instabilities in three dimensions. This code is basically a parallelization and three
dimensional extension of the earlier two-dimensional code [33]. The rest of this paper is
divided into three sections. In Sections 2, we described the physical model appropriate for
simulating ion-driven parametric instabilities. In Section 3, parallel algorithms for solving
the electromagnetic and electrostatic field equations are presented. Timing studies regarding
the performance and parallel efficiency of HERCULES are presented in Section 4. In
Section 5, test simulations of the self-focusing (SF) instability and of the self-focusing-
induced deflection of a laser beam are presented. Section 6 is a summary of our results and
conclusions based on these results.

2. PHYSICAL MODEL

In the presence of an electromagnetic pump wave of frequencyω0, the vector potential
A(x, t) within the plasma can be written as

A(x, t) = 1
2(a(x, t)e−i ω0t + a∗(x, t)ei ω0t ), (1)

wherea(x, t) is complex-valued. The temporal field envelopea is assumed to vary on a
time scale much longer than 2π/ω0. The hybrid model employed in this paper treats the
electrons as an adiabatic fluid with an arbitrary ratio of specific heatsγ . The ions are
treated as finite-size particles, allowing ion kinetic effects to be modeled correctly. Because
kλDe ∼ O(1) (λDe is the electron Debye length) for current ICF plasmas of interest, it is
necessary for Poisson equation to be included in the model, and the plasma is not taken
to be locally quasineutral. The electromagnetic field is analyzed using the temporal WKB
approximation described by Eq. (1), resulting in a nonlinear Schrodinger equation for the
temporal field envelope. A detailed derivation of our hybrid model can be found elsewhere
[33]. The hybrid model can be summarized as
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 . (6)

Here,c is the speed of light,me andmi are the electron and ion masses,Zi is the ionization
state of thei th ion species,ne andni are the electron and ion number densities,γ is the
electron ratio of specific heats,Te0 is the initial electron temperature, anddσ is a surface
area element. Each finite-size particle ion carries a longitudinal velocityui L and positionxi .
Equations (2)–(6) constitute our hybrid model and are solved in three-dimensional Cartesian
space to model ion-driven parametric instabilities.

It is noted here that in deriving the nonlinear Schrodinger equation, Eqs. (2), the trans-
verse plasma current response is assumed to beJT ≈ −(1/4πc2)(ω2

p + Ä2
p)A [33]. For

sufficiently low-density plasmas, as is the case with the current ICF regime of interest, this
is a good approximation. Henceforth, one shall always operate at sufficiently low densities
that Eqs. (2) are valid.

For situations in which the plasma density is sufficiently high, the transverse plasma
response must be written as

JT = − 1

4πc2

(
ω2

p + Ä2
p

)
A − ∇χ

∇2χ ≡ − 1

4πc2
A · ∇

(
ω2

p + Ä2
p

)
,

and the nonlinear Schrodinger equation, Eqs. (2), must be modified accordingly. Such a
general formulation, together with electron kinetic effects, are not within the scope of this
paper and are the subject of ongoing research.

3. NUMERICAL ALGORITHM

Each ion particle carries a chargeqp, positionxp, and velocity upL. Associated with each
particle is an interpolation functionS(x − xp) that determines how the particle charges are
interpolated onto the computational mesh. In our three-dimensional Cartesian implemen-
tation of Eqs. (2)–(6),S(x) is chosen to be a tri-quadratic B-spline [9], and the ion density
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is interpolated onto the computational mesh as

eZi ni (x, t) =
∑
p∈i

qpS(x(t) − xp).

A. Temporal Discretization

Because the temporal discretization scheme for Eqs. (2)–(6) employed in this paper is
identical to that presented and analyzed in an earlier paper [33], we will discuss only the
salient features and properties of the scheme. The interested reader can find more complete
discussions and analyses of the scheme elsewhere [33]. The nonlinear Schrodinger equation,
Eq. (2), is advanced in time using the Crank–Nicolson algorithm. The ion equations of
motion, Eqs. (6), are advanced using the standard leapfrog algorithm in which the velocity
and position are advanced in time alternatively. It was shown that the combined Crank–
Nicolson/leapfrog algorithm conserves the laser energy rigorously and is numerically stable
for Äpδt < 1 [33].

Using the Crank–Nicolson method [33], the electromagnetic field equation, Eq. (2), is
advanced in time as
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The superscripts(n− 1
2), (n), (n+ 1

2), and (n+ 1) refer to the time levelstn − δt/2, tn,
tn + δt/2, andtn+1, wheretn ≡ nδt .

The electrostatic field equations, Eqs. (3)–(5), are simply evaluated at the time level
n [33]:
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 (8)

∫
∇φ(n) · dσ = 0. (9)
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Using the leapfrog algorithm in which the pair of variablesx andupL are advanced in
time alternately [33], the ion equations of motion, Eqs. (6), are approximated as

u(n+1/2)
pL − u(n−1/2)

pL

δt
= −eZi

mi
∇φ(n) −

(
eZi

2mi c

)2

∇
(
a(n) · a∗(n)

)
x(n+1)

p − x(n)
p

δt
= u(n+1/2)

pL .

(10)

At time t = tn−1, when the field quantitiesa(n−1) andφ(n−1), electron densityn(n−1)
e , parti-

cle velocitiesu(n−1/2)
pL and positionsx(n)

p are known, Eqs. (7)–(9) are solved fora(n), φ(n), n(n)
e ,

andα(n). Equations (10) are then advanced in order to obtain the time-advanced velocities
u(n+1/2)

pL and positionsx(n+1)
p .

B. Spatial Discretization

In this section, Eqs. (7)–(10), the time-discrete representation of our hybrid model, are
implemented in Cartesian three-dimensional space. This is an obvious extension of an earlier
Cartesian two-dimensional code [33].

Consider a computational domain consistingof arectangularbox with0≤ x ≤ Lx,0≤ y ≤
L y, and 0≤ z≤ Lz. The computational mesh is staggered and consists of(Nx − 1) ×
(Ny − 1) × (Nz − 1) rectangular cells of equal size.xv

klm, the physical coordinate of the
vertices of the computation cells, andxc

klm, the physical coordinate of the centers of the
computational cells, are specified as

xv
klm = (k − 1)δxêx + (l − 1)δyêy + (m − 1)δzêz

xc
klm = xv

klm + δx

2
êx + δy

2
êy + δz

2
êz,

whereδx ≡ Lx/(Nx − 1), δy ≡ Ly/(Ny − 1), andδz ≡ Lz/(Nz − 1). Here,k, l , andm are
indices labeling the computational cells.

The electron densityne, ion densityni , electrostatic potentialφ, and the pump electro-
magnetic fieldaare cell-centered quantities. The ion densityn(n)

i is interpolated from known
particle data onto the cell centers as

n(n)
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qpS
(
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p

)
, (11)

where, as previously mentioned,S(xc
klm − x) is a tri-quadratic B-spline [9]. The spatially

discrete representation of Eqs. (7)–(9) are [33]
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where the numerical Laplacian operator is defined as follows: It should be noted here that
φ
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(n)
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(n)
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(n)
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, refer to values ofφ(n) in the ghost cells.

At time t = tn−1, when n(n−1)
e , φ(n−1), and a(n−1) are known, the nonlinearly coupled

Eqs. (12)–(14) must be solved in order to obtainn(n)
e , φ(n), anda(n). The ion particles are

advanced in time using a spatially discrete representation of Eqs. (10),
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(15)

where the effective electric field acting on each particle,Ẽ(n)
p , is interpolated from the cell

vertices to the known particle positionsx(n)
p by means of a tri-linear B-spline [9].

The effective electric field at the cell vertices is defined as
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Here,i denotes the ion species to which the particlep belongs.

C. Parallel Decomposition of Computational Domain

The laser is taken to propagate primarily in thex direction, and this choice necessitates
the use of many more computation cells in thex direction than in they andz directions.
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FIG. 1. The two-dimensional decomposition of the three-dimensional computational volume is illustrated.
No decomposition is performed in thex (k) direction. As a specific example, the computational mesh consists
of 64× 64 cells in they–z (l–m) plane and 64 processors are used. The thin solid lines denote the boundaries
between adjacent computational cells, and the thick solid lines denote the boundaries between the processors’
private computational volumes. Each processor carries a single layer of ghost cells immediately surrounding its
private computational volume, as illustrated by the dotted lines.

A two-dimensional parallel decomposition in they–z plane has been applied to the three-
dimensional computational mesh, as illustrated in Figs. 1, where, as a specific example, the
computational mesh consists of 64× 64 cells in they–z (l–m) plane and 64 processors are
used. The computational volume is partitioned intoNpro equal subdomains, whereNpro is
the number of processors, and each subdomain is assigned to a processor and is henceforth
referred to as that processor’s private computational volume. In Figs. 1, the thin solid
lines denote the boundaries between adjacent computational cells, and the thick solid lines
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denote the boundaries between the processors’ private computational volumes. No parallel
decomposition is performed in thex direction, and each processor holds field data and
interpolated density data on cell centers interior to the processor’s private computational
volume. In addition, each processor also carries a single layer of ghost cells immediately
surrounding its private computational volume, as illustrated by the dotted lines in Fig. 1b.

The particles are initially loaded into the processors and are subsequently reassigned
among the processors (through the use of interprocessor communications) as the particles’
positions evolve, in such a manner which ensures that each particle’s position is interior to
the private computational volume of the processor to which it is assigned.

D. Parallel Algorithm for Solving Field Equations

The nonlinearly coupled field equations, Eqs. (12)–(14), can be solved by means of a
splitting algorithm where the equations are first linearized, and the resulting linearized equa-
tions are then solved within a triple-nested modified Newton–Raphson iteration which, upon
convergence, yields solutions to the original nonlinearly coupled equations, Eqs. (12)–(14).
A detailed description of the method can be found in an earlier paper [33]. In the present
work, Eqs. (12)–(14) are solved exactly as outlined in [33]. However, the present work
differs from [33] in that each linearized equation is solved by means of a parallel algorithm
in three dimensions, to be discussed below. Numerical analyses of the properties of the
parallel algorithms, wherever appropriate, shall also be presented.

Following Ref. [33], the nonlinear Schrodinger equation, Eq. (12), is linearized about
a(n)

NR and [K(n)
NR]2, Newton–Raphson iterative approximations ofa(n) and [K(n)]2 (cf. Eqs. (24)

of Ref. [33]), and the resulting equation can be written in the canonical block-matrix form

Clmwlm + Nlm(wl+1,m + wl−1,m) + Elm(wl ,m+1 + wl ,m−1) = blm (16)

with 1≤ l ≤ Ny−1, 1≤ m≤ Nz−1; wlm represents the Newton–Raphson correction for the
electromagnetic field envelope on the computational line(l , m). The submatrices Clm, Nlm,
and Elm are Nx × Nx sparse square matrices and are defined as
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(
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)
+ i
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)
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4
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[
∂
[
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NR,klm

]2

∂a(n)
NR,klm

· a(n)
NR,klm

]

Ck,k±1
lm = 1

2δx2

Nk,k
lm = 1

2δy2

Ek,k
lm = 1

2δz2
,

where 1≤ k ≤ Nx −1. All matrix elements not explicitly defined above are zero, i.e., Clm is
tridiagonal and Nlm and Elm are diagonal. Note that the electromagnetic field envelope has
been implicitly assumed to be linearly polarized. Although Eq. (16) can be modified slightly
to accommodate different types of polarization, such tasks will be left to the interested reader.
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Equation (16) is solved iteratively by means of the line–Jacobi method,

ClmwM+1
lm = −Nlm

(
wM

l+1,m + wM
l−1,m

) − Elm
(
wM

l ,m+1 + wM
l ,m−1

) + blm, (17)

with 1≤ l ≤ Ny − 1 and 1≤ m≤ Nz − 1. Equation (17) can be solved by a standard tridia-
gonal solver simultaneously for all values ofl andm. Interprocessor communications are
required at the beginning of each line–Jacobi iteration because the ghost cells have to
be reinitialized with the values of the electromagnetic field envelope resulting from the
previous iteration. It is noted here that because the tridiagonal matrix equations described
by Eq. (17) have time-dependent variable coefficients, they cannot be solved by cyclic
reduction methods and are, therefore, not parallelizable. Consequently, the two-dimensional
spatial decomposition described in Section 3C is most efficient because thex direction is
inherently nonparallelizable for the particular line–Jacobi algorithm under consideration.

In general, the properties of the line–Jacobi iterative algorithm described by Eq. (17)
cannot be determined because the matrix coefficients are functions of the indicesk, l , andm.
However, under simplified conditions (uniform electron and ion densities, and a sufficiently
weak external electromagnetic field), an analysis can be performed to determine the stability
and asymptotic convergence rate of the algorithm. Such an analysis is complicated and
disruptive to the readability of the paper, and therefore has been deferred to the Appendix.

Under the aforementioned simplified conditions, it has been shown in the Appendix that
the line–Jacobi iteration algorithm described by Eq. (17) is convergent if

max


[

1
δy2 cos

(
π
Ny

)
+ 1

δz2 cos
(

π
Nz

) ]2

[
1

δx2 + 1
δy2 + 1

δz2 − 1
2k2

0 ± 1
δx2 cos

(
π
Nx

)]2
+

(
2ω0
c2δt

)2

 < 1, (18)

where k2
0 ≈ [K (n)

NR]2 ≈ [K (n−1)]2. Equation (18) places a contraint onδt , in addition to
Äpδt < 1, to ensure numerical stability of the hybrid algorithm. However, for most simula-
tions of interest, these two constraints onδt are comparable, and the line–Jacobi algorithm
for solving the Schrodinger equation does not reduce the overall simulation time step.

The Poisson equation, Eqs. (13)–(14), can be linearized (cf. Eqs. (26)–(28) of Ref. [33]),
and the resulting equation is solved by the standard conjugate gradient algorithm (CGA)
without preconditioning. The CGA scheme is particularly suitable for our lineadrized
Poisson equation because the matrix equation can be shown to be symmetric positive-
definite. The CGA scheme without preconditioning involves computing: (a) the numerical
LaplacianDklm operating on mesh arrays, and (b) inner products and sums of mesh arrays,
e.g., computingqklm = rklm + sklm andβ = ∑

klm rklmsklm, whereqklm, rklm, andsklm are
mesh arrays.

The numerical LaplacianDklm operated on the mesh arrayrklm,

Dklm[r ] ≡ rk+1lm − 2rklm + rk−1lm

(δx)2
+ rkl+1m − 2rklm + rkl−1m

(δy)2
+ rklm+1 − 2rklm + rklm−1

(δz)2
,

is computed concurrently on all processors. Of course, prior to this step, interprocessor com-
munications are performed to ensure that the ghost cells contain the necessary information
on r .

The vector additionqklm = rklm + sklm is a local operator and is performed concurrently
on all processors. The inner productβ = ∑

klm rklmsklm is computed in two steps. First, each
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processor is allowed to perform the inner product in its private computational volume. This
step does not involve any communication among the processors and is therefore performed
in parallel. Second, after each processor completes its task, the resulting data are commu-
nicated to a single master processor. The master processor subsequently performs the final
summation of all available data to obtain the inner productβ.

It should be mentioned here that because the initial ion densities are spatially uniform
in the simulations, the particles are scattered evenly across the processors att = 0. For
simulations in which the external electromagnetic field is moderate or weak, the ion density
perturbations are small(|δni /ni | ¿ 1). As a result, the particle ions do not tend to be
spatially bunched, and load balance is well maintained throughout the simulation.

E. Angular Resolution

In simulations of stimulated scattering processes, the angular distribution (with respect
to the incident laser) of scattered light is important. Thus, one needs to have an estimate
of the maximum angular resolution. Such an estimate can be derived by noticing that the
electromagnetic wave, described by Eq. (2), must have a wave numberk0:

k2
0 = 1

c2

(
ω2

0 − ω2
p − Ä2

p

)
.

The largest wave number that can be resolved in the transverse plane (y–z plane) is given
by

k⊥max =
[(

π

δy

)2

+
(

π

δz

)2
]1/2

.

The largest scattering angle that can be resolved can then be written as

θmax = sin−1

[
min

(
1,

k⊥max

k0

)]
.

For the simulations to be presented, whereδy = δz= 1, θmax can be reduced to the form

θmax ≈ sin−1

[
min

(
1,

λ

1

[
2

(
1 − ne

nc

)]−1/2
)]

,

whereλ is the laser’s vacuum wavelength.

F. Boundary and Initial Conditions

The simulations to be presented in Section 4 are periodic in they andz directions, and
aperiodic in thex direction. The laser, to be Gaussian and diffraction-limited with a specified
f -number, enters and simulation domain atx = 0, and leaves the simulation domain at
x = Lx. The corresponding boundary conditions for the scalar and vector potentials are

φ(0, y, z, t) = 0

êx · ∇φ(Lx, y, z, t) = 0

êx · ∇a(0, y, z, t) = i K(0, y, z, t)(2a0(y, z) − a(0, y, z, t))

êx · ∇a(Lx, y, z, t) = i K(Lx, y, z, t) a(Lx, y, z, t).
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Here,a0(y, z) is a specified function and corresponds to the incident electromagnetic wave
at x = 0. a0 is related to the incident laser intensity I as

a0(y, z) · a∗
0(y, z) =

(
8π

cω2
0

)
I(y, z).

For the simulations under consideration in which the laser is taken to be a diffraction-limited
Gaussian beama0 is specified as

a0(y, z) = êz
σy0σz0

σy(0) σz(0)

(
8π I0

cω2
0

)1/2

exp

[
− 1

4σ 2
y (0)

(
y − Ly

2

)2

− 1

4σ 2
z (0)

(
z − Lz

2

)2
]

σ 2
y (x) ≡ σ 2

y0 + i

2k0

(
x − Lx

2

)
σ 2

z (x) ≡ σ 2
z0 + i

2k0

(
x − Lx

2

)
,

where I0 is the diffraction-limited intensity of the laser andσy0 andσz0 are the transverse
widths of the laser at the focal plane.

Initially (t = 0), the plasma is spatially uniform, and the initial condition fora is

a(x, y, z, 0) = êz
σy0σz0

σy(x)σz(x)

(
8π I0

cω2
0

)1/2

exp

[
− 1

4σ 2
y (x)

(
y − Ly

2

)2

− 1

4σ 2
z (x)

(
z− Lz

2

)2
]
,

where K0 = K(x, y, z, 0) is simply a constant.
The boundary conditions presented in this section assume that the electromagnetic waves

propagate at sufficiently small angles relative to thex direction. Electromagnetic waves
propagating at large angles relative to thex direction will suffer artificial reflections at the
boundaries. In the regimes of interest to the ICF effort, the lasers typically have anf/number
of 2–8, which means that in the absence of plasmas, the largest wave-propagation angle with
respect to thex direction is about 14◦. An examination of the reflectivity at the boundaries
x = 0, Lx at t = 0 as a function of scattering angles (results not shown) shows that the
reflectivity is very small and is dominated by Thomson scattering of the initial noise in
the plasma density. Hence, artificial reflections at the boundaries are not of concern for
situations of interest to the ICF effort.

4. TIMING STUDIES

The code has been tested in three dimensions, and two timing studies have been performed
to assess the degree of parallel efficiency of the code. Details of these timing studies are as
follows.

Test simulations with a computational mesh of 4096× 64× 64 (16 million) cells and 16
ion particles per computational cell (a total of 256 million ion particles) is performed. More
details regarding the plasma parameters and laser characteristics for these simulations can
be found in Section 5. First, the total CPU time required for the simulations is recorded and
is divided by the number of time steps in order to obtain the average CPU time required for
each time step. The number of processors, the number of computation cells, and the total
number of particles are varied together so that the number of computation cells and the
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FIG. 2. Color-coded contour plots of the normalized laser intensity(I /I0) on the laser-exit plane(x = Lx) at
three different times: (a)ÄpHt = 0; (b)ÄpHt = 40 (100 ps); and (c)ÄpHt = 65 (160 ps), respectively. The plasma
has no transverse motion.

number of particles per processor remain constant. The results are summarized in Table 1.
The average CPU time required to execute one time step remains nearly constant, as one
would expect. On average, it is found that the amount of CPU time is expended in the
following manner: (a) calculating the ion density by interpolating from particle data onto
the computational mesh via Eq. (11) requires 46% of CPU time (∼0.24µs/particle/time
step), (b) solving for the scalar and vector potentials from Eqs. (12)–(14) requires 20% of
CPU time (∼2µs/computational cell/time step), and (c) updating particle velocities and
positions via Eq. (15) requires 34% of CPU time (∼0.18µs/particle/time step).

Second, a simulation of fixed size is performed in which the number of processors is
varied, and the results are summarized in Table 2. The last column of Table 2 shows the
speedup factor compared with the situation in which only half as many processors are

TABLE 1

No. of processors Grid size No. of particles/cell CPU seconds

64 512× 64× 64 16 136
128 1024× 64× 64 16 148
256 2048× 64× 64 16 145
512 4096× 64× 64 16 143
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TABLE 2

No. of processors Grid size No. of particles/cell CPU seconds Speedup

64 512× 64× 64 16 136
128 512× 64× 64 16 73 1.86
256 512× 64× 64 16 38 1.92
512 512× 64× 64 16 20 1.90

available. For a perfectly scaleable parallel code, one expects the average time required to
execute one time step to be halved when the number of processors is doubled. For our code,
it can be seen from the last column of Table 2 that the speedup factor is about 1.9 whenever
the number of processors is doubled. The results shown in Tables 1 and 2 indicate that our
code has a high degree of parallel efficiency.

5. RESULTS AND DISCUSSION

Test simulations with and without plasma flow transverse to the direction of propagation
of the pump electromagnetic field are presented.

A. Self-Focusing without Plasma Flow

When a coherent laser propagates a plasma, two competing physical mechanisms, which
occur simultaneously, affect the propagation of the laser: (1) diffraction defocuses the laser
beam, and (2) formation of a plasma channel which focuses the laser beam. For sufficiently
low laser intensities, diffraction is the dominant effect, and the laser beam defocuses as it
propagates through the plasma. However, for sufficiently high laser intensities, the formation
of the self-guiding plasma channel is the dominant effect, and the laser beam focuses as it
propagates through the plasma. This is commonly known as self-focusing [34]. It is in this
regime of self-focusing that the simulation, to be described below, is performed.

The simulation is performed in a rectangular simulation box withL y = Lz = 20µm, and
Lx = 50µm. The diffraction-limited laser intensityI0 is taken to be 5× 1016 W/cm2. The
widths of the laser beam,σy0 andσz0, are taken to beL y/16 andLz/16, respectively.ω0,
the frequency of the incident laser, is taken to be 5.37× 1015 Hz and corresponds to a
frequency-tripled Nd-Glass laser with vacuum wavelengthλv = 0.351µm. It can be shown
that the focal plane of the laser is atx = Lx/2, and that the laser has anf/number of 22 (the
f/number is defined to be the ratio of the focal length of the optical lens to its diameter).
Initially, the plasma is spatially uniform and stationary.

The plasma consists of protons and helium ions withnH = nHe = ne/3, Te = 5 keV, and
TH = THe = 0.5 keV. The electron density is taken to be 8.9× 1020cm−3. The ratio of specific
heatsγ is taken to be 1. The simulation box has 4096× 64× 64 (16 million) computational
cells, and each ion species is represented by eight particles per computational cell (a total
of 256 million ion particles). For this simulation,ÄpHδt = 0.1, whereÄpH is the proton
plasma frequency. In principle, SBS, FI, and SF parametric processes can coexist. However,
for this particular simulation, only SBS and SF are observed to occur simultaneously. For
an example of a simulation in which SBS and FI coexist, see Ref. [33].

Figures 2a, 2b, and 2c are color-coded contour plots of the laser intensity, normalized to
the diffraction-limited intensityI0, I /I0 = cω2

0a · a∗/8π I0 on the laser-exit plane(x = Lx)
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FIG. 3. Normalized laser intensity(I /I0) along the center of the laser beam(y = L y/2, z= Lz/2) at two
different times: (a)ÄprmH t = 0; (b)ÄpHt = 65 (160 ps).
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FIG. 4. Color-coded contour plots of the normalized laser intensity(I /I0) on the laser-exist plane(x = Lx)

at three different times: (a)ÄpHt = 0; (b)ÄprmH t = 40 (100 ps); (c)ÄpHt = 65 (160 ps), respectively. The plasma
has a sonic flow in they-direction.

at timesÄpHt = 0, 40, and 65, respectively. Figures 2 indicate that as time progresses, the
laser beam self-focuses to a smaller spot.

Figures 3 consist of plots of laser intensity, normalized toI0, as a function of the axial
distancex, at the center of the beam(y = L y/2, z= Lz/2) for ÄpHt = 0, and 65 (10.5 ps),
respectively. The presence of strong SBS atÄpHt = 65 is evidenced by the short-wavelength
spatial modulation in the laser intensity, which is caused by the beating of the incident and
backscatter waves. The SBS reflectivity, defined as the ratio of the reflected wave intensity
to the incident wave intensity, is nearly 100% atÄpHt = 65. For reference, it is noted here
that for the plasma parameters under consideration,ÄpHt = 65 corresponds tot = 160 ps.

An interesting feature of Figs. 2 is that at timeÄpHt = 65 when self-focusing reduces the
cross-sectional area of the laser beam by about an order of magnitude, the laser intensity,
in fact, does not increase correspondingly by an order of magnitude. This is due to the
fact that in the presence of strong SBS, as indicated by Figs. 3, the incident laser intensity
is depleted significantly near the laser exit plane. A time-history of the total energy (not
shown) indicates that throughout the simulation, the total energy is conserved to within 2%.

It is noted here that for the simulation under consideration, the spatial resolution in the
directions perpendicular to the laser propagation direction isδy = δz≈ λ. Although this
spatial resolution may seem coarse, it will resolve the physics adequately. From physical
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considerations, self-focusing does not reduce the transverse dimensions of the laser beyond
a laser wavelengthfor the range of laser intensities in which the model presented in this paper
is valid. If physical parameters are such that self-focusing is sufficiently strong to reduce
the transverse dimensions of the laser beyond a laser wavelength , the model presented
here will break down anyway because physical processes not included in the model, e.g.,
electron kinetic effects and polarization effects, will be important. Hence, within the confines
of parameter space in which the model is valid, one does not expect self-focusing to be
sufficiently strong that one must requireδy ¿ λ andδz¿ λ. As a matter of practically, if
one requires thatδy = δz¿ λ, instead, the time stepδt allowed is reduced and has to be
determined according to Eq. (A4) in order to ensure numerical convergence of the line–
Jacobi algorithm used in solving the nonlinear Schrodinger equation. The combination of
smaller time steps, a larger number of computational cells, and a larger number of finite-size
particles demand more resources than a CRAY-T3D with 512 processors can provide. One
can, however, choose to simulate smaller physical systems than the simulations presented in
this paper. However, since no additional physics is expected to be recovered, this approach
has not been undertaken.

With ne/nc = 0.1, θmax, the largest scattering angle allowed (see Section 3E), is approx-
imately 48◦, and the simulation remains accurate when sidescatter electromagnetic waves
occur at angles smaller thanθmax= 48◦. This is, in fact, the case for the simulation under
consideration.

It is also noted here that, since the boundary condition is periodic in they andzdirections,
it may be possible for electromagnetic waves and ion acoustic waves with large angles of
propagation (relative to thex direction) to be recycled within the simulation domain, giving
rise to unphysical results. In order to avoid such situations, the transverse dimensions of the
simulation domains have been chosen sufficiently large that no wave-recycling occurs.

B. Self-Focusing with Plasma Flow

In the presence of transverse plasma flows and sufficiently strong ion Landau damping,
the self-guiding plasma channel (due to the laser beam, as discussed in Section 5A) is
displaced in the direction of the transverse plasma flows. Consequently, the laser beam is
refracted in the direction of the plasma flows, resulting in a change of laser propagation
direction. Here, a simulation is performed in which laser beam bending is observed.

For the simulation described in Section 5A, it can be shown that the ion acoustic speed,
normalized to the speed of light, is approximately 2× 10−3 [33, 35]. A simulation is per-
formed in which the plasma flow is sonic and is initially in they direction (transverse to the
laser propagation direction). All other parameters are identical to the simulation described
in Section 5A. Figures 4a, 4b, and 4c are color-coded contour plots of the normalized laser
intensity on the laser-exit plane at timesÄpHt = 0, 40, and 65, respectively. A compar-
ison of Figs. 2 (without transverse flow) and 4 (with transverse flow) shows that in the
presence of a transverse plasma flow, the laser beam is deflected in the direction of the
flow by about 1.7◦. The deflection of the laser beam by a transverse plasma flow has been
observed experimentally [36–37], and although the effect of beam deflection has been an-
alyzed and simulated within the context of fluid models [38–40], the simulation presented
in this section is the first fully three-dimensional particle-in-cell study of this effect. For
the particular case under consideration, the SBS reflectivity is only about 40%, compared
with 100% for the case where the transverse plasma flow is absent. Thus, in addition to
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the deflection of the laser beam, the transverse plasma flow tends to weaken SBS. It is
noted here that a simple fluid model, which accounts for two transverse dimensions and
for nonlinear hydrodynamics, yields a beam deflection angle of about 3◦ [41]. This is in
good agreement with our simulation result, given that the simple fluid model does not ac-
count for processes such as SBS and self-focusing that tend to affect the beam deflection
angle.

C. Small f/Number Simulation

Recent experiments in which a nearly diffraction-limited laser beam interacts with a
plasma to produce filamentation, SBS, self-focusing, and energetic ions, have been reported
[42]. The physical size of the plasma(∼250µm× 64µm× 64µm) and the duration of the
laser pulse (100 ps FWHM) are such that the entire experiment can be simulated with our
present three-dimensional hybrid code. Simulations of such experiments using our code,
and comparisons with actual experimental data, are ongoing [43]. Here, one such simulation
is presented at early times for illustrative purposes.

The plasma consists of protons and carbon ions withnH = nC = ne/7, Te = 1 keV, and
TH = TC = 0.5 keV. The electron density is taken to be 8.9× 1019 cm−3. The ratio of specific
heatsγ is taken to be 1. The simulation box has 4096× 64× 64 (16 million) computational
cells, and each ion species is represented by eight particles per computational cell (a total
of 256 million ion particles). For this simulation,ÄpHδt = 0.05, whereÄpH is the proton
plasma frequency. The laser has a vacuum wavelength of 1.06µm and is modeled as a
diffraction-limited beam withf/number of 4. The diffraction-limited laser intensityI0 is
5× 1015 W/cm2.

Figures 5a and 5b are color-coded contour plots of the laser intensity, normalized to
the diffraction-limited intensityI0, on the plane of symmetry defined byz= 0, at times
ÄpHt = 0, and 50 (10.5 ps), respectively. Figures 5 indicate that there are significant SBS
activities and that the laser beam becomes asymmetric in the laser propagation direction.
The laser beam, however, remains symmetric in the transverse directions. The beam, as
shown in Figs. 5, tends to disperse wider in the transverse plane. This is in qualitative agree-
ment with the experimental observations [44]. For this particular simulation, the maximum
resolvable angle (with respect to thex-direction) isθmax= 48◦. As seen from Figs. 5, the
laser beam, at timeÄpHt = 50, has a cone angle of about 30◦ (with respect to thex-direction.
Consequently, the simulation is still in a regime where there is adequate angular resolution
of the scattered waves.

6. SUMMARY AND CONCLUSIONS

In this report, a massively parallel three-dimensional hybrid code, implemented on the
CRAY-T3D, appropriate for modeling ion-driven parametric instabilities in laser-driven
plasmas is presented. This code is a parallelization and three-dimensional extension of
an earlier two-dimensional code [33]. The model consists of a Schrodinger-like equation
for the vector potential, a Poisson equation for the scalar potential, an exactly integrable
electron momentum equation, and the equations of motion for the finite-size ion particles.
The Schrodinger equation is solved by a line–Jacobi iterative algorithm, and the Poisson
equation is solved by a standard conjugate gradient algorithm without preconditioning.
Both of these algorithms are naturally suitable for the CRAY-T3D. An analysis of the line–
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FIG. 5. Color-coded contour plots of the normalized laser intensity(I /I0) on the plane of symmetryz= 0 at
two different times: (a)ÄpHt = 0; (b)ÄpHt = 50 (10.5 ps). The plasma has no transverse motion.

Jacobi algorithm is included in the Appendix. It was shown that for typical simulations, the
line–Jacobi algorithm is stable for anyδt and, therefore, does not place any restriction on
the time step.

Three-dimensional simulations of the self-focusing instability with and without plasma
flow transverse to the external electromagnetic field have been performed. The results show
that in the absence of transverse plasma flow, the cross-section area of the laser beam tends
to decrease with the propagation distance into the plasma. This effect is known as self-
focusing and results from the self-consistent interaction between the plasma and the laser.
In the presence of transverse plasma flows, the results indicate that the laser beam is bent
into the direction of the plasma flow. This effect is due to collisionless damping and is
qualitatively consistent with previous fluid theory and simulations [4–7].
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In our test simulations for which there are 16 particles/cell, it was found that with 512
processors, the code requires about 0.6µs/particle/time step. The timing results indicate
that code has a high degree of efficiency, evidenced by the fact that the CPU time required is
reduced by a factor of 1.9 whenever the number of processors is doubled. In test simulations
(not shown) with the number of particles per computational cell∼O(102), the code requires
only ∼0.4µs/particle/time step.

Recent experiments suggest that the interaction between electron-driven and ion-driven
parametric instabilities may be a credible saturation mechanism for these instabilities [45].
In the near future, we are planning to include electron kinetic effects in HERCULES in
order to investigate the interplay between electron-driven and ion-driven instabilities.

APPENDIX: LINE–JACOBI METHOD APPLIED TO SCHRODINGER EQUATION

In general, the line–Jacobi algorithm described in Eq. (17) cannot be analyzed because
the matrix coefficients are functions of the indicesk, l , andmand are not analytically known
functions. In order for the analysis to be more tractable, the electron and ion densities are
assumed to be nearly uniform and the external electromagnetic field is taken to be sufficiently
weak that density perturbations arising from the interaction between the external field and
the plasma is negligible. Under these conditions,k2

0 ≈ [K (n)
NR]2 ≈ [K (n−1)]2, and the submatrix

Clm can be approximated as follows:

Ck,k
lm ≈ −

(
1

δx2
+ 1

δy2
+ 1

δz2

)
+ i

(
2ω0

c2δt

)
+ 1

2
k2

0

Ck,k ± 1
lm = 1

2δx2
.

The eigenvaluesλ of the line–Jacobi algorithm can be obtained by solving the equation

λClmelm = −Nlm(el+1,m + el−1,m) − Elm(el ,m+1 + el ,m−1), (A.1)

wheree is the eigenvector associated withλ. It can be deduced from Eq. (12) that the
eigenvectoremust be of the form:

ek
lm = exp

(
i
kk′π
Nx

)
exp

(
i
ll ′π
Ny

)
exp

(
i
mm′π

Nz

)
. (A.2)

Substituting Eq. (A.2) into Eq. (A.1), one obtains

λ =


1
δy2 cos

(
l ′π
Ny

)
+ 1

δz2 cos
(

m′π
Nz

)
1

δx2 + 1
δy2 + 1

δz2 − 1
2k2

0 − 1
δx2 cos

(
k′π
Nx

)
+ i

(
2ω0
c2δt

)
 , (A.3)

where 1≤ k′ ≤ Nx − 1, 1≤ m′ ≤ Ny − 1, and 1≤ l ′ ≤ Nz − 1. The line–Jacobi algorithm
converges when the spectral radius (the largest norm of the eigenvalues) is bounded by
unity:

max


[

1
δy2 cos

(
π
Ny

)
+ 1

δz2 cos
(

π
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2k2

0 ± 1
δx2 cos

(
π
Nx

)]2
+

(
2ω0
c2δt

)2

 < 1. (A.4)
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When conditions are such that Eq. (A.4) is satisfied, the line–Jacobi algorithm will converge
at the following asymptotic rate:

R = −log

max


[

1
δy2 cos

(
π
Ny

)
+ 1

δz2 cos
(

π
Nz

)]2

[
1

δx2 + 1
δy2 + 1

δz2 − 1
2k2

0 ± 1
δx2 cos

(
π
Nx

)]2
+

(
2ω0
c2δt

)2


 . (A.5)

The following interesting property of the line–Jacobi algorithm can be derived from
Eq. (A.4). For sufficiently smallδx (k0δx <

√
2), the algorithm is convergent for anyδt if

2

(
1

δy2
+ 1

δz2

)
− 1

2

(
π

L y

)2

− 1

2

(
π

Lz

)2

+ 1

2

(
π

Lx

)2

<
1

2
k2

0. (A.6)

In most simulations, Eq. (A.6) is satisfied, and the line–Jacobi iterative algorithm places
no restriction on the time step. For instance, consider a typical simulation in whichLx =
50µm, L y = Lz = 11µm, Nx = 4096, Ny = Nz = 64, ω0 = 5.37× 1015 Hz (frequency-
tripled Nd:Glass laser), andne = 8.9× 1020 cm−3 (10% of critical density). For these pa-
rameters,k0 = 1.7× 105 cm−1, k0δx = 0.21<

√
2, and Eq. (A.6) is clearly satisfied. With

ω0δt = 60, the asymptotic rate of convergence isR= 0.38, and it takes only 10 iterations
to reduce the initial error by four orders of magnitude.
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