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A massively parallel three-dimensional hybrid particle-in-cell (PIC) code, imple-
mented on the CRAY-T3D, is presented. The code is based on a physical model
described in a previous report where the electrons are modeled as an adiabatic fluid
with an arbitrary ratio of specific hegtsand the electromagnetic field model is based
on a temporal Wentzel-Krammers—Brillouin (WKB) approximation. On a CRAY-
T3D with 512 processors, the code requires abo@u@/particle/time step. The
largest test problem performed with this code consists of a computational mesh of
4096x 64 x 64 (16 million) cells, a total of 256 million particles, and corresponds to
a plasma volume of 5@m x 20um x 20m (approximately 15@ x 601 x 602,
wherex is the laser’'s vacuum wavelength). We believe this code is the first PIC
computational tool capable of simulating low-frequency ion-driven parametric insta-
bilities in a large, three-dimensional plasma volume and offers a unique opportunity
for examining issues that are potentially vital to inertial confinement fusion (ICF),
e.g., nonlinear ion kinetic effects and their role in nonlinear saturation mechanisms
in three dimensions. Test simulations of the self-focusing (SF) instability and of the
self-focusing-induced deflection of a laser beam are presentgthos Academic Press

Key Wordsmassively parallel; three-dimensional; particle-in-cell; parametric in-
stabilities; laser-produced plasmas; stimulated Brillouin scattering.

1. INTRODUCTION

In inertial confinement fusion (ICF) applications an external high-frequency monocl
matic electromagnetic wave such as alaser is employed to irradiate the plasma. The e
monochromatic electromagnetic wave, due to its interaction with the plasma, can unc
either electron-driven or ion-driven parametric instabilities, and decays into various ¢
binations of daughter waves [1]. Recent experiments [2—3] and fluid simulations [
indicate that ion-driven parametric instabilities, which affect the propagation of exte
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driving electromagnetic fields, are prevalent in current ICF plasmas of interest. Due t
multitude of spatial and temporal scales that exist in such plasmas and the fact that the
ternal driving electromagnetic field is of high frequency, general-purpose explicit, implic
and hybrid PIC algorithms [8—32] are either incapable of simulating the actual physics
computationally inefficient. In a recent work [33], a special-purpose hybrid PIC model w
presented in which the electrons are modeled as an adiabatic fluid with an arbitrary r
of specific heaty, and the electromagnetic field model is based on a temporal Wentze
Krammers—Brillouin (WKB) approximation. This hybrid PIC model was implemented il
two dimensions and was shown to model ion Landau damping, finite-Debye-length effe
aperiodically driven stimulated Brillouin scattering (SBS), and the interaction between S
and the filamentation instability (FI) correctly [33].

In this paper, we present HERCULES, a massively parallel three-dimensional hybrid |
code, implemented on the CRAY-T3D, appropriate for modeling low-frequency ion-driv
parametric instabilities in three dimensions. This code is basically a parallelization and tf
dimensional extension of the earlier two-dimensional code [33]. The rest of this pape
divided into three sections. In Sections 2, we described the physical model appropriate
simulating ion-driven parametric instabilities. In Section 3, parallel algorithms for solvir
the electromagnetic and electrostatic field equations are presented. Timing studies rega
the performance and parallel efficiency of HERCULES are presented in Section 4.
Section 5, test simulations of the self-focusing (SF) instability and of the self-focusir
induced deflection of a laser beam are presented. Section 6 is a summary of our result:
conclusions based on these results.

2. PHYSICAL MODEL

In the presence of an electromagnetic pump wave of frequegcthe vector potential
A(x, t) within the plasma can be written as

Ax, 1) = (@, tye™ ™! + a*(x, e, (1)

wherea(x, t) is complex-valued. The temporal field envelagpes assumed to vary on a
time scale much longer thanr2wg. The hybrid model employed in this paper treats the
electrons as an adiabatic fluid with an arbitrary ratio of specific hgafBhe ions are
treated as finite-size particles, allowing ion kinetic effects to be modeled correctly. Beca
kipe~ O(1) (Ape is the electron Debye length) for current ICF plasmas of interest, it |
necessary for Poisson equation to be included in the model, and the plasma is not t
to be locally quasineutral. The electromagnetic field is analyzed using the temporal W
approximation described by Eq. (1), resulting in a nonlinear Schrodinger equation for
temporal field envelope. A detailed derivation of our hybrid model can be found elsewh
[33]. The hybrid model can be summarized as
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Here,cis the speed of lighth, andm; are the electron and ion massg&sjs the ionization
state of thdath ion speciesn. andn; are the electron and ion number densitiess the
electron ratio of specific heat$g is the initial electron temperature, add is a surface
area element. Each finite-size particle ion carries a longitudinal velagignd positiorx;.
Equations (2)—(6) constitute our hybrid model and are solved in three-dimensional Carte
space to model ion-driven parametric instabilities.

It is noted here that in deriving the nonlinear Schrodinger equation, Egs. (2), the tr:
verse plasma current response is assumed tdrbe—(1/47¢%) (w5 + 23)A [33]. For
sufficiently low-density plasmas, as is the case with the current ICF regime of interest,
is a good approximation. Henceforth, one shall always operate at sufficiently low dens
that Egs. (2) are valid.

For situations in which the plasma density is sufficiently high, the transverse pla:
response must be written as

1
hr=-135 (0f + Q5)A — Vy
1

and the nonlinear Schrodinger equation, Egs. (2), must be modified accordingly. Su
general formulation, together with electron kinetic effects, are not within the scope of
paper and are the subject of ongoing research.

3. NUMERICAL ALGORITHM

Each ion particle carries a chargg, positionx, and velocity y, . Associated with each
particle is an interpolation functioB(x — xp) that determines how the particle charges ar
interpolated onto the computational mesh. In our three-dimensional Cartesian impler
tation of Eqgs. (2)—(6)S(x) is chosen to be a tri-quadratic B-spline [9], and the ion densi
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is interpolated onto the computational mesh as

ezni(x,t) = quS(x(t) — Xp).

pei

A. Temporal Discretization

Because the temporal discretization scheme for Egs. (2)—(6) employed in this pape
identical to that presented and analyzed in an earlier paper [33], we will discuss only
salient features and properties of the scheme. The interested reader can find more con
discussions and analyses of the scheme elsewhere [33]. The nonlinear Schrodinger equ
Eqg. (2), is advanced in time using the Crank—Nicolson algorithm. The ion equations
motion, Egs. (6), are advanced using the standard leapfrog algorithm in which the velo
and position are advanced in time alternatively. It was shown that the combined Cra
Nicolson/leapfrog algorithm conserves the laser energy rigorously and is numerically st
for Qpét <1 [33].

Using the Crank—Nicolson method [33], the electromagnetic field equation, Eq. (2).
advanced in time as

(2w @™ —a™b 1
i < wo) — 4 Evz(a(”) +a"?)
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ez = Y apS(—xp). ez = Y apS(x— )
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The superscriptsn— ), (n), (n+ 3), and (n+ 1) refer to the time levels, — 5t/2, t,,
tn + 8t/2, andt, 1, wheret, = nét.

The electrostatic field equations, Egs. (3)—(5), are simply evaluated at the time le
n [33]:

e
ep™ — — Cza(m a® — f(y,n0) = o™
e

(8)
Vip™ = 4ne(ng‘) -Y z ni(n)>
i

/ Vo™ .do =0. 9)
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Using the leapfrog algorithm in which the pair of variableandup_ are advanced in
time alternately [33], the ion equations of motion, Eqgs. (6), are approximated as

(n+1/2) (n71/2) 2
2t Yo _ _LZV¢(n> _ (24 v (@ . am)
ot m; 2mic (10)
(D) _ 5 ()
Xp Xp L2
st Ut

Attimet =t,_1, when the field quantitieg™? andg ™", electron densitp"~?, parti-
cle velocities{® and positions( are known, Egs. (7)—(9) are solved &P, ™, n{,
anda™. Equauons (10) are then advanced in order to obtain the time-advanced veloc

uf® and positions(+Y.

B. Spatial Discretization

In this section, Eqgs. (7)—(10), the time-discrete representation of our hybrid model,
implemented in Cartesian three-dimensional space. Thisis an obvious extension ofan e
Cartesian two-dimensional code [33].

Consider a computational domain consisting of arectangularbox with @ Ly,0<y <
Ly, and 0<z<L,. The computational mesh is staggered and consistNef- 1) x
(Ny —1) x (N, — 1) rectangular cells of equal sizgy,,,, the physical coordinate of the
vertices of the computation cells, anfl,,, the physical coordinate of the centers of th
computational cells, are specified as

Xiim = (K= 1)éx& + (I — 1)5yéy + (M —1)5z8&,

c v X R N
Xkim = Xkim T 7ex + > —€ + 5 eZ,
wheresx = Ly/(Ny —1),8y = Ly/(Ny—1),andéz = L,/(N, —1). Herek, |, andm are
indices labeling the computational cells.
The electron densitye, ion densityn;, electrostatic potentiap, and the pump electro-
magnetic fielda are cell-centered quantities. The ion densff‘ﬁlis interpolated from known
particle data onto the cell centers as

N oim = Z% (Xaim — Xp"). (11)
pei

where, as previously mentionefi(xg,,, — X) is a tri-quadratic B-spline [9]. The spatially
discrete representation of Egs. (7)—(9) are [33]

2 (n) (n—1) 1
I( ét;o) Aim gtaklm E(Dkl [a(n)] I Dklm[a(n_l)])
=0 (12)
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where the numerical Laplacian operator is defined as follows: It should be noted here
Doms Drim> Proms ¢S,3ym, dilo, andgn, | refer to values 0p™ in the ghost cells.

At time t =t,_1, whenn"Y ¢™-D anda™? are known, the nonlinearly coupled
Egs. (12)—(14) must be solved in order to obtaifi, ¢, anda™. The ion particles are
advanced in time using a spatially discrete representation of Egs. (10),

LMY | 0-1/2)

pL upL eZ| (n)
5t m Ep
(15)
(D) _
Xp Xp _ 12
st Yol

where the effective electric field acting on each partiFEI@,, is interpolated from the cell
vertices to the known particle position%‘,“ by means of a tri-linear B-spline [9].
The effective electric field at the cell vertices is defined as
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Here,i denotes the ion species to which the partigleelongs.

C. Parallel Decomposition of Computational Domain

The laser is taken to propagate primarily in thdirection, and this choice necessitates
the use of many more computation cells in thdirection than in they andz directions.
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FIG. 1. The two-dimensional decomposition of the three-dimensional computational volume is illustrai
No decomposition is performed in the(k) direction. As a specific example, the computational mesh consis
of 64 x 64 cells in they-z (I-m) plane and 64 processors are used. The thin solid lines denote the bounds
between adjacent computational cells, and the thick solid lines denote the boundaries between the proc
private computational volumes. Each processor carries a single layer of ghost cells immediately surroundi
private computational volume, as illustrated by the dotted lines.

A two-dimensional parallel decomposition in thiez plane has been applied to the three
dimensional computational mesh, as illustrated in Figs. 1, where, as a specific exampl
computational mesh consists of §464 cells in they—z (I-m) plane and 64 processors are
used. The computational volume is partitioned ihig, equal subdomains, wheb, is

the number of processors, and each subdomain is assigned to a processor and is hen
referred to as that processor’s private computational volume. In Figs. 1, the thin s
lines denote the boundaries between adjacent computational cells, and the thick solid
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denote the boundaries between the processors’ private computational volumes. No pa
decomposition is performed in thedirection, and each processor holds field data an
interpolated density data on cell centers interior to the processor’s private computatic
volume. In addition, each processor also carries a single layer of ghost cells immedia
surrounding its private computational volume, as illustrated by the dotted lines in Fig. 1

The particles are initially loaded into the processors and are subsequently reassic
among the processors (through the use of interprocessor communications) as the part
positions evolve, in such a manner which ensures that each patrticle’s position is interic
the private computational volume of the processor to which it is assigned.

D. Parallel Algorithm for Solving Field Equations

The nonlinearly coupled field equations, Egs. (12)—(14), can be solved by means «
splitting algorithm where the equations are first linearized, and the resulting linearized ec
tions are then solved within a triple-nested modified Newton—Raphson iteration which, uj
convergence, yields solutions to the original nonlinearly coupled equations, Egs. (12)—(
A detailed description of the method can be found in an earlier paper [33]. In the pres
work, Eqgs. (12)—(14) are solved exactly as outlined in [33]. However, the present wc
differs from [33] in that each linearized equation is solved by means of a parallel algoritt
in three dimensions, to be discussed below. Numerical analyses of the properties of
parallel algorithms, wherever appropriate, shall also be presented.

Following Ref. [33], the nonlinear Schrodinger equation, Eq. (12), is linearized abc
a( and [K{%]2, Newton—Raphson iterative approximationsif and [K™]2 (cf. Egs. (24)
of Ref. [33]), and the resulting equation can be written in the canonical block-matrix for

CimWim + Nim Wiy 1.m +Wi—1m) + Eim (Wi my1 + Wi m-1) = bim (16)
with1 <l <Ny—1, 1<m<N,—1; wy, represents the Newton—Raphson correction for th

electromagnetic field envelope on the computationaldine). The submatrices &, Nim,
and g, are N, x Ny sparse square matrices and are defined as

1 1 1 20 1
kK g ik ’
o=~ (5at st 52) + (o) + a (10 + Kbl )

1 [B[Kw&.klm]z (n) ]

B ! R.kIm
2 aaﬁg,klm
1
Kkl
Cim = G
kk _ 1
1
Kk
Ein = 2872°

where 1< k < Ny — 1. All matrix elements not explicitly defined above are zero, i.g,,i€

tridiagonal and N, and Ey, are diagonal. Note that the electromagnetic field envelope hi:
been implicitly assumed to be linearly polarized. Although Eq. (16) can be modified sligh
to accommodate different types of polarization, such tasks will be leftto the interested rea
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Equation (16) is solved iteratively by means of the line—Jacobi method,
CimWim™* = —Nim (W m + WL ) = Bim (Wi +W_1) + bim, (17)

with 1<l <Ny —1 and 1< m <N, — 1. Equation (17) can be solved by a standard tridi
gonal solver simultaneously for all valuesladndm. Interprocessor communications are
required at the beginning of each line—Jacobi iteration because the ghost cells ha
be reinitialized with the values of the electromagnetic field envelope resulting from
previous iteration. It is noted here that because the tridiagonal matrix equations desc
by Eqg. (17) have time-dependent variable coefficients, they cannot be solved by c
reduction methods and are, therefore, not parallelizable. Consequently, the two-dimens
spatial decomposition described in Section 3C is most efficient becaugeditection is
inherently nonparallelizable for the particular line—Jacobi algorithm under consideratic

In general, the properties of the line—Jacobi iterative algorithm described by Eg. |
cannot be determined because the matrix coefficients are functions of the ndicasdm.
However, under simplified conditions (uniform electron and ion densities, and a sufficie
weak external electromagnetic field), an analysis can be performed to determine the sta
and asymptotic convergence rate of the algorithm. Such an analysis is complicatec
disruptive to the readability of the paper, and therefore has been deferred to the Appe

Under the aforementioned simplified conditions, it has been shown in the Appendix
the line—Jacobi iteration algorithm described by Eq. (17) is convergent if

1 bid 1 b4 2

{m COS(N—y> +WCOS(N—Z)}
1 1 1 11,2 1 b4 2 2w 2
oo+ b~ 6k oS )|+ (8)

where k2 ~ [K (]2~ [K ™-D]2, Equation (18) places a contraint @h, in addition to
Qpdt <1, to ensure numerical stability of the hybrid algorithm. However, for most simu
tions of interest, these two constraints&rare comparable, and the line—Jacobi algorithr
for solving the Schrodinger equation does not reduce the overall simulation time step.

The Poisson equation, Egs. (13)—(14), can be linearized (cf. Egs. (26)—(28) of Ref. [
and the resulting equation is solved by the standard conjugate gradient algorithm (C
without preconditioning. The CGA scheme is particularly suitable for our lineadriz
Poisson equation because the matrix equation can be shown to be symmetric pos
definite. The CGA scheme without preconditioning involves computing: (a) the numer|
LaplacianDy, operating on mesh arrays, and (b) inner products and sums of mesh ari
e.g., computingikim = kim + Skm and 8 = > jm NkimSkim, Wheredim, rkim, andsgm are
mesh arrays.

The numerical LaplaciaBy, operated on the mesh arrgym,

max <1, (18)

Mkttim — 2kim + Tk—tm — Fki4im — 2Mkm + Ti—1m . Tkim+1 — 20kim + Mdam—1
Dumlr] = ,
aml] (5%)2 * 0y)? - (652)2

is computed concurrently on all processors. Of course, prior to this step, interprocessor
munications are performed to ensure that the ghost cells contain the necessary inforrn
onr.

The vector additiomym =rum + S«m iS a local operator and is performed concurrentl
on all processors. The inner prodyce >, MkimSqm iS computed in two steps. First, eact



266 H. X. VU

processor is allowed to perform the inner product in its private computational volume. T
step does not involve any communication among the processors and is therefore perfol
in parallel. Second, after each processor completes its task, the resulting data are cor
nicated to a single master processor. The master processor subsequently performs the
summation of all available data to obtain the inner proguct

It should be mentioned here that because the initial ion densities are spatially unifc
in the simulations, the particles are scattered evenly across the processer§.afor
simulations in which the external electromagnetic field is moderate or weak, the ion den
perturbations are smaflén;/nij| < 1). As a result, the particle ions do not tend to be
spatially bunched, and load balance is well maintained throughout the simulation.

E. Angular Resolution

In simulations of stimulated scattering processes, the angular distribution (with resg
to the incident laser) of scattered light is important. Thus, one needs to have an estir
of the maximum angular resolution. Such an estimate can be derived by noticing that
electromagnetic wave, described by Eqg. (2), must have a wave nikgber

1
kg: g(wg—w%—ﬁﬁ).

The largest wave number that can be resolved in the transverse plangldne) is given

Kimax = [(;y): (;Tzﬂ

The largest scattering angle that can be resolved can then be written as

. . k
Bmax = SiN 1{m|n<1, Lk“;ax)].

For the simulations to be presented, wh&ye=5z= A, Omax can be reduced to the form

. . A n —12
Omax ~ sint [mm (1, A [2(1 — n—i)] )] ,

wherea is the laser’s vacuum wavelength.

1/2

F. Boundary and Initial Conditions

The simulations to be presented in Section 4 are periodic ity tedz directions, and
aperiodic in thex direction. The laser, to be Gaussian and diffraction-limited with a specifie
f-number, enters and simulation domainxat 0, and leaves the simulation domain at
X = Ly. The corresponding boundary conditions for the scalar and vector potentials are

¢0,y,z,t) =0
& -Vo(ly, y,zt) =0
& -VvVa,y,zt) =iK(0,vY, z t)(2ay(y, 2 — a0, y, z,1))
& - Valyx, y,zt) =iK(Ly, ¥, z,t) a(Lx, Y, 2, t).
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Here,ag(y, 2) is a specified function and corresponds to the incident electromagnetic w
atx =0. ag is related to the incident laser intensity | as

(v, 2) - a( z)—<8”)l< 2)
(Y, (Y, 2) = ca? Y, 2).
For the simulations under consideration in which the laser is taken to be a diffraction-lim
Gaussian beam, is specified as

a(y. 2) = &,— 1 (8ﬂ|°>1/2ex __1 (—ﬂ>2— ! (Z—E)Z
V8 =& 0)02(0) \ co a0\ 2 40£(0) 2
o= g (1 5)

i L

where | is the diffraction-limited intensity of the laser angy ando,g are the transverse
widths of the laser at the focal plane.
Initially (t =0), the plasma is spatially uniform, and the initial condition &as

. oyon  [8mlo\Y? 1 Ly\? 1 L,\?
s Yo & 0 = Y - - _y - — A )
ax.y.z.0) ezay(x)oz(x)(c;wg> TP 20V T2 ) Tazo \P 2

where Ky =K(X, Yy, z, 0) is simply a constant.

The boundary conditions presented in this section assume that the electromagnetic \
propagate at sufficiently small angles relative to xhdirection. Electromagnetic waves
propagating at large angles relative to thdirection will suffer artificial reflections at the
boundaries. Inthe regimes of interest to the ICF effort, the lasers typically hdy@mamber
of 2—-8, which means that in the absence of plasmas, the largest wave-propagation angl
respect to thex direction is about 14 An examination of the reflectivity at the boundaries
x=0,Lx att=0 as a function of scattering angles (results not shown) shows that
reflectivity is very small and is dominated by Thomson scattering of the initial noise
the plasma density. Hence, artificial reflections at the boundaries are not of concer
situations of interest to the ICF effort.

4. TIMING STUDIES

The code has been tested in three dimensions, and two timing studies have been perf
to assess the degree of parallel efficiency of the code. Details of these timing studies «
follows.

Test simulations with a computational mesh of 46964 x 64 (16 million) cells and 16
ion particles per computational cell (a total of 256 million ion particles) is performed. Mc
details regarding the plasma parameters and laser characteristics for these simulatiol
be found in Section 5. First, the total CPU time required for the simulations is recorded
is divided by the number of time steps in order to obtain the average CPU time require
each time step. The number of processors, the number of computation cells, and the
number of particles are varied together so that the number of computation cells anc
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FIG. 2. Color-coded contour plots of the normalized laser inter@if{to) on the laser-exit planex = L) at
three different times: (&t = 0; (b) 2,ut =40 (100 ps); and (2 ,ut =65 (160 ps), respectively. The plasma
has no transverse motion.

number of particles per processor remain constant. The results are summarized in Ta
The average CPU time required to execute one time step remains nearly constant, &
would expect. On average, it is found that the amount of CPU time is expended in
following manner: (a) calculating the ion density by interpolating from particle data or
the computational mesh via Eq. (11) requires 46% of CPU tiw@Z4 us/particle/time
step), (b) solving for the scalar and vector potentials from Eqgs. (12)—(14) requires 20¢
CPU time (2 us/computational cell/time step), and (c) updating particle velocities a
positions via Eqg. (15) requires 34% of CPU time((18 us/particle/time step).

Second, a simulation of fixed size is performed in which the number of processol
varied, and the results are summarized in Table 2. The last column of Table 2 show:
speedup factor compared with the situation in which only half as many processors

TABLE 1
No. of processors Grid size No. of particles/cell CPU seconds
64 512x 64 x 64 16 136
128 1024x 64 x 64 16 148
256 2048x 64 x 64 16 145

512 4096x 64 x 64 16 143




270 H. X. VU

TABLE 2
No. of processors Grid size No. of particles/cell CPU seconds Speedup
64 512x 64 x 64 16 136
128 512x 64 x 64 16 73 1.86
256 512x 64 x 64 16 38 1.92
512 512x 64 x 64 16 20 1.90

available. For a perfectly scaleable parallel code, one expects the average time requir
execute one time step to be halved when the number of processors is doubled. For our
it can be seen from the last column of Table 2 that the speedup factor is about 1.9 when
the number of processors is doubled. The results shown in Tables 1 and 2 indicate tha
code has a high degree of parallel efficiency.

5. RESULTS AND DISCUSSION

Test simulations with and without plasma flow transverse to the direction of propagat
of the pump electromagnetic field are presented.

A. Self-Focusing without Plasma Flow

When a coherent laser propagates a plasma, two competing physical mechanisms, v
occur simultaneously, affect the propagation of the laser: (1) diffraction defocuses the I
beam, and (2) formation of a plasma channel which focuses the laser beam. For sufficie
low laser intensities, diffraction is the dominant effect, and the laser beam defocuses
propagates through the plasma. However, for sufficiently high laser intensities, the forma
of the self-guiding plasma channel is the dominant effect, and the laser beam focuses
propagates through the plasma. This is commonly known as self-focusing [34]. Itis in t
regime of self-focusing that the simulation, to be described below, is performed.

The simulation is performed in a rectangular simulation box Wwigh= L, =20um, and
Lx =50um. The diffraction-limited laser intensitly is taken to be 5 10 W/cn?. The
widths of the laser beanay,q andoy, are taken to bé /16 andL,/16, respectivelyw,
the frequency of the incident laser, is taken to b&75 10> Hz and corresponds to a
frequency-tripled Nd-Glass laser with vacuum wavelengts 0.351um. It can be shown
that the focal plane of the laser isxat L« /2, and that the laser has &pinumber of 22 (the
f/number is defined to be the ratio of the focal length of the optical lens to its diamete
Initially, the plasma is spatially uniform and stationary.

The plasma consists of protons and helium ions wjih= nye =ne/3, Tc=5keV, and
Ty = The = 0.5 keV. The electron density is taken to b8 & 10°%cm~3. The ratio of specific
heatsy is taken to be 1. The simulation box has 40964 x 64 (16 million) computational
cells, and each ion species is represented by eight particles per computational cell (a
of 256 million ion particles). For this simulatio® 15t = 0.1, whereQ,y is the proton
plasma frequency. In principle, SBS, FI, and SF parametric processes can coexist. How
for this particular simulation, only SBS and SF are observed to occur simultaneously.
an example of a simulation in which SBS and FI coexist, see Ref. [33].

Figures 2a, 2b, and 2c are color-coded contour plots of the laser intensity, normalize
the diffraction-limited intensitylg, | /1o = nga~ a* /8w lg on the laser-exit planéx = L)
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FIG. 4. Color-coded contour plots of the normalized laser intendiyt) on the laser-exist plang = Ly)
at three different times: (&) ut = 0; (b) Qprmnt =40 (100 ps); (CX2,Ht =65 (160 ps), respectively. The plasma
has a sonic flow in thg-direction.

at timesQput =0, 40, and 65, respectively. Figures 2 indicate that as time progresses
laser beam self-focuses to a smaller spot.

Figures 3 consist of plots of laser intensity, normalizedgtoas a function of the axial
distancex, at the center of the beaty=Ly/2, z=L,/2) for Qp4t =0, and 65 (10.5 ps),
respectively. The presence of strong SBR it = 65 is evidenced by the short-wavelengtt
spatial modulation in the laser intensity, which is caused by the beating of the incident
backscatter waves. The SBS reflectivity, defined as the ratio of the reflected wave inte
to the incident wave intensity, is nearly 100%3i4t = 65. For reference, it is noted here
that for the plasma parameters under considerafignt = 65 corresponds tb= 160 ps.

Aninteresting feature of Figs. 2 is that at tiffdg,t = 65 when self-focusing reduces the
cross-sectional area of the laser beam by about an order of magnitude, the laser inte
in fact, does not increase correspondingly by an order of magnitude. This is due tc
fact that in the presence of strong SBS, as indicated by Figs. 3, the incident laser inte
is depleted significantly near the laser exit plane. A time-history of the total energy (
shown) indicates that throughout the simulation, the total energy is conserved to within

It is noted here that for the simulation under consideration, the spatial resolution in
directions perpendicular to the laser propagation directiotyis §z~ A. Although this
spatial resolution may seem coarse, it will resolve the physics adequately. From phy
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considerations, self-focusing does not reduce the transverse dimensions of the laser be
alaser wavelengthfor the range of laser intensities in which the model presented in this p
is valid. If physical parameters are such that self-focusing is sufficiently strong to redt
the transverse dimensions of the laser beyond a laser wavelength , the model prese
here will break down anyway because physical processes not included in the model,
electron kinetic effects and polarization effects, will be important. Hence, within the confir
of parameter space in which the model is valid, one does not expect self-focusing tc
sufficiently strong that one must requitg <« A and§z <« A. As a matter of practically, if
one requires thaty = §z <« A, instead, the time steft allowed is reduced and has to be
determined according to Eq. (A4) in order to ensure numerical convergence of the li
Jacobi algorithm used in solving the nonlinear Schrodinger equation. The combinatior
smaller time steps, a larger number of computational cells, and a larger number of finite-
particles demand more resources than a CRAY-T3D with 512 processors can provide.
can, however, choose to simulate smaller physical systems than the simulations presen
this paper. However, since no additional physics is expected to be recovered, this appr
has not been undertaken.

With ng/n. = 0.1, 6max the largest scattering angle allowed (see Section 3E), is apprc
imately 48, and the simulation remains accurate when sidescatter electromagnetic we
occur at angles smaller th@n.x=48. This is, in fact, the case for the simulation under
consideration.

Itis also noted here that, since the boundary condition is periodic yahez directions,
it may be possible for electromagnetic waves and ion acoustic waves with large angle
propagation (relative to thedirection) to be recycled within the simulation domain, giving
rise to unphysical results. In order to avoid such situations, the transverse dimensions o
simulation domains have been chosen sufficiently large that no wave-recycling occurs

B. Self-Focusing with Plasma Flow

In the presence of transverse plasma flows and sufficiently strong ion Landau damp
the self-guiding plasma channel (due to the laser beam, as discussed in Section 5;
displaced in the direction of the transverse plasma flows. Consequently, the laser bez
refracted in the direction of the plasma flows, resulting in a change of laser propaga
direction. Here, a simulation is performed in which laser beam bending is observed.

For the simulation described in Section 5A, it can be shown that the ion acoustic spe
normalized to the speed of light, is approximately 202 [33, 35]. A simulation is per-
formed in which the plasma flow is sonic and is initially in thdirection (transverse to the
laser propagation direction). All other parameters are identical to the simulation descri
in Section 5A. Figures 4a, 4b, and 4c are color-coded contour plots of the normalized Iz
intensity on the laser-exit plane at tim@syt =0, 40, and 65, respectively. A compar-
ison of Figs. 2 (without transverse flow) and 4 (with transverse flow) shows that in t
presence of a transverse plasma flow, the laser beam is deflected in the direction o
flow by about 1.7. The deflection of the laser beam by a transverse plasma flow has be
observed experimentally [36—37], and although the effect of beam deflection has beer
alyzed and simulated within the context of fluid models [38-40], the simulation presen
in this section is the first fully three-dimensional particle-in-cell study of this effect. Fc
the particular case under consideration, the SBS reflectivity is only about 40%, compe
with 100% for the case where the transverse plasma flow is absent. Thus, in additio
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the deflection of the laser beam, the transverse plasma flow tends to weaken SBS
noted here that a simple fluid model, which accounts for two transverse dimensions
for nonlinear hydrodynamics, yields a beam deflection angle of alsoj13. This is in
good agreement with our simulation result, given that the simple fluid model does not
count for processes such as SBS and self-focusing that tend to affect the beam defle
angle.

C. Small f/Number Simulation

Recent experiments in which a nearly diffraction-limited laser beam interacts wit
plasmato produce filamentation, SBS, self-focusing, and energetic ions, have been rey
[42]. The physical size of the plasmt&250um x 64 um x 64 m) and the duration of the
laser pulse (100 ps FWHM) are such that the entire experiment can be simulated witt
present three-dimensional hybrid code. Simulations of such experiments using our ¢
and comparisons with actual experimental data, are ongoing [43]. Here, one such simul
is presented at early times for illustrative purposes.

The plasma consists of protons and carbon ions wite= nc =ng/7, Te=1keV, and
Ty =Tc=0.5keV. The electron density is taken to b® & 10'° cm~2. The ratio of specific
heatsy is taken to be 1. The simulation box has 40964 x 64 (16 million) computational
cells, and each ion species is represented by eight particles per computational cell (a
of 256 million ion particles). For this simulatio® 5t = 0.05, whereQ2, is the proton
plasma frequency. The laser has a vacuum wavelength of din®@&nd is modeled as a
diffraction-limited beam withf /number of 4. The diffraction-limited laser intensity is
5 x 10" Wicn?.

Figures 5a and 5b are color-coded contour plots of the laser intensity, normalize
the diffraction-limited intensitylp, on the plane of symmetry defined ky=0, at times
Qput =0, and 50 (10.5 ps), respectively. Figures 5 indicate that there are significant
activities and that the laser beam becomes asymmetric in the laser propagation dire:
The laser beam, however, remains symmetric in the transverse directions. The bea
shown in Figs. 5, tends to disperse wider in the transverse plane. This is in qualitative a
ment with the experimental observations [44]. For this particular simulation, the maxim
resolvable angle (with respect to thedirection) isfy.x=48. As seen from Figs. 5, the
laser beam, at tim@ pt = 50, has a cone angle of about3@ith respect to the-direction.
Consequently, the simulation is still in a regime where there is adequate angular resol
of the scattered waves.

6. SUMMARY AND CONCLUSIONS

In this report, a massively parallel three-dimensional hybrid code, implemented on
CRAY-T3D, appropriate for modeling ion-driven parametric instabilities in laser-drive
plasmas is presented. This code is a parallelization and three-dimensional extensi
an earlier two-dimensional code [33]. The model consists of a Schrodinger-like equa
for the vector potential, a Poisson equation for the scalar potential, an exactly integr
electron momentum equation, and the equations of motion for the finite-size ion partic
The Schrodinger equation is solved by a line—Jacobi iterative algorithm, and the Poi
equation is solved by a standard conjugate gradient algorithm without precondition
Both of these algorithms are naturally suitable for the CRAY-T3D. An analysis of the lir
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FIG.5. Color-coded contour plots of the normalized laser intendifyfo) on the plane of symmetry=0 at
two different times: (af2put = 0; (b) 2t =50 (10.5 ps). The plasma has no transverse motion.

Jacobi algorithm is included in the Appendix. It was shown that for typical simulations, tl
line—Jacobi algorithm is stable for ady and, therefore, does not place any restriction ol
the time step.

Three-dimensional simulations of the self-focusing instability with and without plasn
flow transverse to the external electromagnetic field have been performed. The results s
that in the absence of transverse plasma flow, the cross-section area of the laser beam
to decrease with the propagation distance into the plasma. This effect is known as ¢
focusing and results from the self-consistent interaction between the plasma and the |
In the presence of transverse plasma flows, the results indicate that the laser beam is
into the direction of the plasma flow. This effect is due to collisionless damping and
qualitatively consistent with previous fluid theory and simulations [4—7].
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In our test simulations for which there are 16 particles/cell, it was found that with 5
processors, the code requires about @sfparticle/time step. The timing results indicate
that code has a high degree of efficiency, evidenced by the fact that the CPU time requil
reduced by a factor of 1.9 whenever the number of processors is doubled. In test simuls
(not shown) with the number of particles per computationale@l(10?), the code requires
only ~0.4 us/particle/time step.

Recent experiments suggest that the interaction between electron-driven and ion-d
parametric instabilities may be a credible saturation mechanism for these instabilities |
In the near future, we are planning to include electron kinetic effects in HERCULES
order to investigate the interplay between electron-driven and ion-driven instabilities.

APPENDIX: LINE-JACOBI METHOD APPLIED TO SCHRODINGER EQUATION

In general, the line—Jacobi algorithm described in Eq. (17) cannot be analyzed bec
the matrix coefficients are functions of the indi&ek, andm and are not analytically known
functions. In order for the analysis to be more tractable, the electron and ion densitie
assumed to be nearly uniform and the external electromagnetic field is taken to be suffici
weak that density perturbations arising from the interaction between the external field
the plasma s negligible. Under these conditid@sy [K 212 ~ [K ®~]2, and the submatrix
Cim can be approximated as follows:

1 1 1 2w
chkk o (T4 & 4 &
Im (8x2+8y2+822>+ (028t>+ ks
kke1 1
Im 7 psx2

The eigenvalues of the line—Jacobi algorithm can be obtained by solving the equation
)LCImam = _Nlm(a+1,m + afl,m) - Elm(a,m+1 + a.mfl)» (A-l)

wheree is the eigenvector associated with It can be deduced from Eq. (12) that the
eigenvectoe must be of the form:

kK I m
e, = exp(i Nxﬂ) exp<i Nj) exp<i mNZn ) (A.2)
Substituting Eq. (A.2) into Eq. (A.1), one obtains
52 cos("—”) - L cos(%)
5 2 , (A.3)
6x2+8y2+ﬁ_’ko—mcos( )+I(CT(‘(;?)

where 1<k’ < Ny—1,1<m < Ny —1, and 1<I” < N, — 1. The line-Jacobi algorithm
converges when the spectral radius (the largest norm of the eigenvalues) is bounds

unity:
[ayz COS( )+522 COS( )]2 1 Ad)
2 2 g '
[6x2+5y2+ﬁ__kg 5x2 COS(NlX)} + (%)

A=

max
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When conditions are such that Eq. (A.4) is satisfied, the line—Jacobi algorithm will conve
at the following asymptotic rate:

2
1 b4 1 T
[WC"S(NT) + a?c°s(w—z)} (
2 2 .
[+ sl 5 — 38k cos(2)] + (%)

The following interesting property of the line—Jacobi algorithm can be derived fro
Eq. (A.4). For sufficiently smalix (ko5x < +/2), the algorithm is convergent for ady if

1 1\ 1/z\? 1/z\? 1/z\*> 1,
(s52)2(0) ~2(0) w2(0) <3¢ o

In most simulations, Eq. (A.6) is satisfied, and the line—Jacobi iterative algorithm plac
no restriction on the time step. For instance, consider a typical simulation in Which
50pum, Ly=L,=11um, Ny=4096, Ny= N, =64, wg="5.37x 10"°Hz (frequency-
tripled Nd:Glass laser), anak = 8.9 x 10?°°cm3 (10% of critical density). For these pa-
rametersko = 1.7 x 10° cm 1, kodx =0.21 < +/2, and Eq. (A.6) is clearly satisfied. With
wpdt =60, the asymptotic rate of convergenceRis- 0.38, and it takes only 10 iterations
to reduce the initial error by four orders of magnitude.

R = —log | max

A.5)
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